Spezifische Kohlendioxid-Emission bei verschiedenen Stromerzeugungsarten

Die Kohlendioxid-Emissionen der Stromerzeugung nach Art der Erzeugung wurde u. a. für den Weltklimarat (IPCC) durch eine Arbeitsgruppe ermittelt, wobei die Spannen bei den spezifischen Kohlendioxid-Emissionen verschiedener Stromerzeugungsarten unter Berücksichtigung von Erntefaktor (Energetische Amortisation, englisch Energy Returned on Energy Invested, ERoEI, manchmal auch EROI) zusammengestellt wurde.

Hier eine Kurzfassung zur Kohlendioxid-Emission nach Stromerzeugungsarten

Mittleres Kohlenstoffdioxidäquivalent pro Kilowattstunde bei der Stromerzeugung[1]
Kraftwerkstyp(g CO2eq)/kWh
Braunkohlekraftwerk1.175
Steinkohlekraftwerk820
GuD-Gaskraftwerk490
Biomassekraftwerk230
Photovoltaikanlage41–48
Kernkraftwerk12
Windkraftanlage11–12

Kohlendioxid-Emission nach Sektoren

Für Elektroautos anzurechnende Kohlendioxid-Emission

Der Strommix ist u. a. bei der Diskussion um die Sinnhaftigkeit von Elektroautos relevant, sowohl beim Betriebsort als auch beim Ort der Herstellung, insbesondere des Akkus.

Ein Diesel-PKW emittiert bei 6 Liter Verbrauch auf 100 km ca. 156 g CO2 pro Kilometer direkt aus dem Auspuff. Dazu kommt noch umgerechnet ein weiterer Liter Verbrauch aus der Vorkette, denn der kumulierte Energieverbrauch bei der Herstellung von Treibstoffen (Well-to-Tank) verbrauchte etwa einen zusätzlichen Liter Erdöl bei der Dieselherstellung, hauptsächlich in der Raffinerie, dazu Transport in Öltanker, Pipeline, Tanklastwagen. Das ergibt insgesamt ca. 180 g pro km für einen Diesel-PKW mit Vorkette, quasi sieben Liter Diesel Gesamtverbrauch bei sechs Liter Verbrauch im Fahrzeug.

Ein Elektroauto verbraucht 15 bis 20 kWh auf 100 km, emittiert dabei keinerlei Abgas direkt, der CO2-Rucksack kommt im Betrieb nur aus der Stromherstellung. In Deutschland kann man im Zeitraum 2015 bis 2018 von einer Größenordnung um ca. 500 g/kWh (entspricht GuD-Erdgaskraftwerk) ausgehen und kommt damit bei 20 kWh Verbrauch auf 100 g pro Kilometer. Das entspricht vier Liter Pseudo-Diesel zu sieben Liter Diesel. Geht man beim E-Auto vom üblichen Kurzstreckenverkehr mit 15 kWh/100 km aus, und Strommix von inzwischen 400 g/kWh, so kommt man auf 60 g/km, das entspricht einem vergleichbaren Verbrauch von gut zwei Liter.

Die Werte erhöhen sich für beide Antriebsarten, wenn man den Aufwand für die Herstellung der Fahrzeuge mit einrechnet, wobei oft nur ein Mehraufwand für die Herstellung einer E-Auto-Batterie angesetzt wird. Eine vielzitierte schwedische Studie[7] aus dem Jahr 2017 schrieb der Herstellung pro Kilowattstunde Kapazität etwa 175 kg CO2 zu, was auf 175.000 km Fahrstrecke jeweils 1 g pro Kilometer und Kilowattstunde Akkugröße ergibt, bei mittlerer Größe von 50 kWh also 50 g/km, was zwei Liter Diesel entspräche.

Gemäß UBA sank der Wert für die spezifische Kohlendioxid-Emission, der im Zeitraum 2015 bis 2018 noch um 500 ± 30 lag, 2019 auf knapp über 400, und 2020 deutlich unter 400 – 366 g/kWh allerdings bedingt durch C19-Pandemie 2020. Nach vorübergehender Erhöhung durch die Globale Energiekrise 2021–2023, bei der Gas durch Kohle ersetzt wurde und zudem Ausfälle der französischen Atomkraftwerke 2021–22 durch Korrosion und Kühlwassermangel in den Nachbarländern zu fossil erzeugten Strom teuer ausgeglichen werden mussten, hat sich der Wert für Deutschland 2023 trotz Abschaltung der Kernkraftwerke im selben Jahr auf geschätzt 380 g/kWh verringert.

Für ein typisches E-Auto entspricht diese Verbesserung der Einsparung eines (zusätzlichen) Liter Kraftstoffes auf 100 km, 20 kWh entsprechen damit weniger als drei Liter Diesel. Zudem besteht meist die Möglichkeit, bevorzugt dann zu laden, wenn besonders viel Strom aus Photovoltaik oder Wind im Netz ist, oder wenn Solarstrom vom eigenen Dach kommt. In einigen Ländern ist zudem der Anteil an Wasserkraft sehr hoch, Beispiel Norwegen, Pionierland der Elektromobilität. Länder wie Frankreich haben einen hohen Anteil an Atomstrom und nachts Überschuss, der in E-Autos geladen werden kann.

Einige Webseiten geben den Strommix in nahezu Echtzeit für Deutschland (unter den Suchbegriffen Agorameter,[8] Energy-Charts,[10] Bundesnetzagentur Strommarktdaten[11]) und international (electricityMap)[12] an und illustrieren die Abhängigkeit von der Verfügbarkeit von Wind und Sonnenlicht in Deutschland und deren Bundesländen.

Weblinks

Quelle: https://de.wikipedia.org/wiki/Spezifische_Kohlendioxid-Emission